ജീവന്റെ സമവാക്യങ്ങള്‍

56

Sabu Jose (science writer)

ജീവന്റെ സമവാക്യങ്ങള്‍

ഒരു ഗ്രഹത്തിലോ അതിന്റെ സ്വാഭാവിക ഉപഗ്രഹത്തിലോ ജീവന്‍ ഉദ്ഭവിക്കുന്നതിനും വളർന്ന് വികസിക്കുന്നതിനും നിലനിൽക്കുന്നതിനുമുള്ള കഴിവാണ് ഹാബിറ്റബിലിറ്റി. സൗരയൂഥം ജീവനുദ്ഭവിക്കുന്നതിനും വളർന്ന് വികസിക്കുന്നതിനുള്ള അനുകൂലനങ്ങളുള്ള മേഖലയാണ്. ജീവന്റെ നിലനില്പിന് ഏറ്റവും ആവശ്യമായിട്ടുള്ളത് സ്ഥിരമായുള്ളൊരു ഊർജ സ്രോതസ്സാണ്. നക്ഷത്രങ്ങളാണ് ഊർജ ദായകര്‍. എന്നാല്‍, അതുകൊണ്ടു മാത്രം ജീവന്‍ ഉദ്ഭവിക്കണമെന്നില്ല. നിരവധി ഭൗതിക, രാസ, ജ്യോതിശാസ്ത്ര സമവാക്യങ്ങള്‍ ഒത്തുചേരേണ്ടത് അതിനാവശ്യമാണ്. നിലവിലുള്ള ധാരണയനുസരിച്ച് ജലമാണ് ജീവന്റെ അടിസ്ഥാനം. ദ്രാവകരൂപത്തില്‍ ജലം നിലനില്ക്കുന്ന മേഖലയില്‍ മാത്രമേ ജീവന് സാധ്യതയുള്ളൂ എന്ന നിഗമനമാണ് ഇപ്പോഴുള്ളത്. നക്ഷത്രങ്ങളിൽ നിന്നു പുറപ്പെടുന്ന ഊർജമുപയോഗിച്ച് സങ്കീർണമായ ജൈവ തന്മാത്രകള്‍ സൃഷ്ടിക്കപ്പെടണമെങ്കില്‍ ജലസാന്നിധ്യം അനിവാര്യമാണ്.

പ്രപഞ്ചത്തില്‍ ഏതെങ്കിലുമൊരു ദ്രവ്യപിണ്ഡത്തില്‍ ജീവന്‍ ഉദ്ഭവിച്ചു വികസിക്കണമെങ്കില്‍ നിരവധി സാഹചര്യങ്ങള്‍ ഒത്തുവരണം. ദ്രവ്യരൂപത്തിന്റെ വലിപ്പം, പിണ്ഡം, ഭ്രമണപഥത്തിന്റെ സവിശേഷതകള്‍, അന്തരീക്ഷം, ഉപരിതല ഘടന, ജലസാന്നിധ്യം, ജൈവതന്മാത്രകള്‍ സൃഷ്ടിക്കപ്പെടുന്ന തരത്തിലുള്ള രാസപ്രവർത്തന ശേഷി എന്നിവയെല്ലാം പരിഗണിക്കണം. അതിനുപുറമെ മാതൃനക്ഷത്രത്തിന്റെ പിണ്ഡവും ശോഭയും താപനിലയുമെല്ലാം അനുകൂലമാവുകയും വേണം. ചില സാധ്യതകള്‍ പരിശോധിക്കാം.

1. മാതൃനക്ഷത്രത്തിൽ നിന്ന് ഗ്രഹത്തിലേക്കുള്ള ദൂരം
ജലമാണ് ജീവന്റെ ഗർഭഗൃഹമെന്ന് കരുതിയാല്‍ ഗ്രഹകുടുംബങ്ങളില്‍ ജലം ദ്രാവകാവസ്ഥയില്‍ നിലനില്ക്കു്ന്ന മേഖലയെ വാസയോഗ്യ മേഖലയായി കണക്കാക്കാം. ഇതൊരു കൃത്യമായ അളവല്ല. നക്ഷത്രത്തിന്റെ വലിപ്പവും ശോഭയും താപനിലയുമെല്ലാം വാസയോഗ്യമേഖല നിർണയിക്കുന്നതില്‍ പ്രധാന പങ്കുവഹിക്കുന്നുണ്ട്. സൗരയൂഥത്തിലെ വാസയോഗ്യ മേഖല സൂര്യനിൽ നിന്നും 12 കോടി കിലോമീറ്ററിനും 22 കോടി കിലോമീറ്ററിനും ഇടയിലാണ്. സൂര്യനിൽ നിന്നും ഭൂമിയിലേക്കുള്ള ശരാശരി ദൂരം 15 കോടി കിലോമീറ്ററാണ്. അതിനർഥം ഭൂമി വാസയോഗ്യ മേഖലയിലാണെന്നാണ്.

2. പിണ്ഡം
ഭൗമപിണ്ഡത്തിനടുത്ത് ഭാരമുള്ളതും വലിപ്പമുള്ളതുമായ ഗ്രഹങ്ങളിലും ഉപഗ്രഹങ്ങളിലുമാണ് ജീവന്‍ കണ്‍െത്തുന്നതിനുള്ള സാധ്യത കൂടുതലുള്ളത്. ചെറിയ ഗ്രഹങ്ങളില്‍ ജീവന്‍ വളര്ന്നു വികസിക്കുന്നതിനുള്ള സാധ്യത കുറവാണ്. അവയുടെ കുറഞ്ഞ ഗുരുത്വബലം അന്തരീക്ഷത്തെ പിടിച്ചു നിർത്താൻ പര്യപ്തമല്ല. സൗരവാതങ്ങളുടെ ആക്രമണം വാതക തന്മാത്രകളുടെ ഗതികോര്ജം വര്ധിപ്പിക്കുകയും പലായന പ്രവേഗം മറികടന്ന് അവ സ്‌പേസിലേക്ക് രക്ഷപ്പെടുകയും ചെയ്യും. കട്ടിയുള്ള അന്തരീക്ഷമില്ലാത്ത ഗ്രഹങ്ങളില്‍ ജീവന്റെ ഉദ്ഭവത്തിനാവശ്യമായ പ്രാഥമിക ജൈവ-രാസ പ്രവർത്തനങ്ങള്‍ നടക്കില്ല. രണ്ടാമതായി കുറഞ്ഞ പിണ്ഡമുള്ള ഗ്രഹങ്ങളില്‍ അവയുടെ സ്വാഭാവിക ഊര്ജോല്പാദന സംവിധാനങ്ങള്‍ പെട്ടെന്നു തന്നെ നിർവീര്യമാകും. ഭൂകമ്പങ്ങളും അഗ്നിപർവത സ്‌ഫോടനങ്ങളും ഫലക ചലനങ്ങളുമാണ് സ്വാഭാവിക ഊർജോൽപാദന രീതികള്‍. ഇവയില്‍ പ്രധാനം ഫലക ചലനം തന്നെയാണ്. ഭൂമിയില്‍ ജീവന്‍ വളർന്ന് വികസിക്കുന്നതിന് അനുകൂലമായതും ഇത്തരം സ്വാഭാവിക ഊർജസ്രോതസ്സുകളാണ്. വലിയ പിണ്ഡമുള്ള നക്ഷത്രങ്ങള്‍ വാതക ഭീമന്മാരായിരിക്കും. ഖര, ദ്രാവക ഉപരിതലമില്ലാത്തതും വികിരണങ്ങള്‍ പുറപ്പെടുവിക്കുന്നതുമായ ഇത്തരം ദ്രവ്യപിണ്ഡങ്ങളില്‍ ജീവന്‍ നിലനില്ക്കുുന്നതിനുള്ള സാധ്യതയില്ല. നക്ഷത്രസാമീപ്യം കൊണ്ടുമാത്രം ഒരു ഗ്രഹം വാസയോഗ്യമാകില്ല.

3. ഗ്രഹ ചലനങ്ങള്‍
മാതൃനക്ഷത്രത്തെ ചുറ്റിയുള്ള ഗ്രഹങ്ങളുടെ ഭ്രമണപഥം പൊതുവെ ദീർഘവൃത്താകാരമായിരിക്കും. എന്നാല്‍, ഭ്രമണപഥം അതിദീർഘവൃത്തമായാല്‍ ഗ്രഹത്തിലെ താപനിലയില്‍ വലിയ ഏറ്റക്കുറച്ചിലുകളുണ്ടാകും. ഇത് ജീവന് ഗുണകരമാവില്ല. ഗ്രഹങ്ങളുടെ സ്വയം ഭ്രമണം വേഗതയിലായിരിക്കണം. ദൈർഘ്യം കൂടിയ പകലുകളും രാത്രികളും ജീവന് അഭികാമ്യമല്ല. മാത്രവുമല്ല, ഇവ ഏകദേശം തുല്യവുമായിരിക്കണം. വേഗത്തില്‍ ഭ്രമണം ചെയ്യുന്ന ഗ്രഹത്തില്‍ മാത്രമേ ഒരു ആന്തര ഡൈനമോ പ്രവര്ത്തിക്കുകയുള്ളൂ. ഈ ഡൈനമോ സൃഷ്ടിക്കുന്ന കാന്തിക മണ്ഡലമാണ് ഗ്രഹാന്തരീക്ഷത്തെ ഒരുപരിധിവരെ പിടിച്ചുനിർത്തുന്നതും ജീവന് ഹാനികരമായ വികിരണങ്ങളിൽ നിന്ന് ഗ്രഹത്തെ സംരക്ഷിക്കുന്നതും. അതുപോലെതന്നെ ഗ്രഹത്തിന്റെ ഭ്രമണവക്രത്തിലുണ്ടാകുന്ന സ്ഥാനമാറ്റം ചിലപ്പോഴെങ്കിലും ജീവനെ പ്രതികൂലമായി ബാധിക്കാറുണ്ട്. ഭൂമിയുടെ കാര്യത്തില്‍ ഇത്തരമൊരു പുരസരണം സംഭവിച്ചത് 26,000 വർഷങ്ങൾക്ക് മുമ്പാണ്.

4. ജൈവ-രാസ ഘടന
കാർബണ്‍ അടിസ്ഥാന ഘടകമായുള്ള ജൈവ വ്യവസ്ഥയാണ് ഇതുവരെ തെളിയിക്കപ്പെട്ടിട്ടുള്ളത്. കാര്ബ്ണ്‍, ഹൈഡ്രജന്‍, ഓക്‌സിജന്‍, നൈട്രജന്‍ എന്നീ മൂലകങ്ങളാണ് ജീവന്റെ ഉദ്ഭവത്തിന് ഏറ്റവും അത്യാവശ്യമായിട്ടുള്ളത്. ഏറ്റവുമധികം പ്രതിപ്രവർത്തന ശേഷിയുള്ളതും ഈ മൂലകങ്ങൾക്കാണ്. അമിനോ ആസിഡുകള്‍ നിര്‍മിക്കപ്പെടുന്നത് ഈ നാലു മൂലകങ്ങള്‍ ചേർന്നാണ്. പ്രോട്ടീന്‍ തന്മാത്രകളുടെ ബിൽഡിംഗ് ബ്ലോക്കുകളാണ് അമിനോ ആസിഡുകള്‍. അതുകൊണ്ടുതന്നെ ഈ മൂലകങ്ങള്‍ സമൃദ്ധമായുള്ള ഗ്രഹവ്യവസ്ഥകളില്‍ മാത്രമേ ജീവന്‍ ഉദ്ഭവിക്കാനുള്ള സാധ്യതയുള്ളൂവെന്നാണ് നിലവിലുള്ള ഏറ്റവും ശക്തമായ സിദ്ധാന്തം.
മാതൃനക്ഷത്രത്തിന്റെ സാന്നിധ്യം മാത്രമല്ല, അതിന്റെ സവിശേഷതകളും ഒരു ഗ്രഹത്തെ വാസയോഗ്യമാക്കുന്നതില്‍ സുപ്രധാന പങ്കാണ് വഹിക്കുന്നത്.

5. നക്ഷത്രശോഭ
നക്ഷത്രങ്ങളുടെ ശോഭയിലുണ്ടാകുന്ന ഏറ്റക്കുറച്ചിലുകള്‍ സ്വാഭാവികമാണ്. എന്നാല്‍, ഇത്തരം ഏറ്റക്കുറച്ചിലുകള്‍ ക്രമാതീതമായാല്‍ അതു സൃഷ്ടിക്കുന്ന താപവ്യതിയാനവും അതിശക്തമായ കാന്തികക്ഷേത്രവും ഗ്രഹങ്ങളിലെ ജീവന്റെ ഏറ്റവും ലളിതമായ തുടിപ്പുകളെപ്പോലും കരിച്ചുകളയും. ചരനക്ഷത്രങ്ങള്‍ ഉദാഹരണമാണ്. നക്ഷത്രശോഭയുടെ അടിസ്ഥാനത്തില്‍ താരങ്ങളെ പല ഗ്രൂപ്പുകളായി വര്ഗീകരിച്ചിട്ടുണ്ട്. ഉപരിതല താപനില 4000 കെൽപിനും 7000 കെൽവിനും ഇടയിലുള്ള ഗ്രൂപ്പുകളില്‍ പെടുന്ന നക്ഷത്രങ്ങൾക്ക് ചുറ്റുമുള്ള ഗ്രഹങ്ങളില്‍ മാത്രമേ ജീവന്‍ നിലനില്ക്കു്കയുള്ളൂവെന്നാണ് കരുതപ്പെടുന്നത്. ചുവന്ന കുള്ളന്‍ നക്ഷത്രങ്ങള്ക്കു ചുറ്റുമുള്ള ഗ്രഹങ്ങളിലും ജീവന്‍ കണ്‍െത്താനുള്ള നേരിയ സാധ്യതയുണ്ട്.

6. ലോഹ സാന്നിധ്യം
നക്ഷത്ര ദ്രവ്യത്തിന്റെ ഭൂരിഭാഗവും ഹൈഡ്രജന്‍, ഹീലിയം എന്നീ മൂലകങ്ങളാണ്. എന്നാല്‍, ചില നക്ഷത്രങ്ങളിലെങ്കിലും ഖനമൂലകങ്ങള്‍ കൂടുതലായി കാണപ്പെടും. ഇത്തരം നക്ഷത്രങ്ങൾക്ക് ചുറ്റും ഗ്രഹരൂപീകരണം നടക്കുന്നത് അപൂർവ മാണ്. മാത്രവുമല്ല, അത്തരം ഗ്രഹങ്ങളില്‍ ജീവന്റെ സാധ്യതയുമില്ല. ലോഹസാന്നിധ്യം കുറവുള്ള നക്ഷത്ര കുടുംബങ്ങളിലാണ് ജീവനുദ്ഭവിക്കാനുള്ള സാധ്യതയെന്നാണ് നിലവിലുള്ള പരികല്പന.

7. നക്ഷത്ര പിണ്ഡം
വലിയ നക്ഷത്രങ്ങൾക്ക് ചുറ്റും ഗ്രഹരൂപീകരണം നടക്കാനുള്ള സാധ്യത വിരളമാണ്. അടുത്തിടെ നടന്ന ഗവേഷണങ്ങളില്‍ സൗരപിണ്ഡത്തിന്റെ നൂറുമടങ്ങിലധികം ഭാരമുള്ള ഭീമന്‍ നക്ഷത്രങ്ങൾക്ക് ചുറ്റും അവയുടെ വാസയോഗ്യ മേഖലയില്‍ ബുധനു തുല്യമായ ഗ്രഹങ്ങളെ കണ്ടെത്തിത്തിയിട്ടുണ്ട്. വലിയ നക്ഷത്രങ്ങൾക്ക് ആയുസ്സ് വളരെ കുറവാണ്. സൂര്യനെപ്പോലെയുള്ള ഒരു ശരാശരി വലിപ്പമുള്ള നക്ഷത്രത്തിന്റെ ആയുസ്സ് ഏകദേശം 1000 കോടി വർഷമാണെങ്കില്‍ ഭീമന്‍ നക്ഷത്രങ്ങൾക്ക് അത് ഏതാനും ലക്ഷം വർഷങ്ങള്‍ മാത്രമേ ഉണ്ടാകൂ. ഈ കുറഞ്ഞ കാലയളവില്‍ അവയുടെ വാസയോഗ്യ മേഖലയിലുള്ള ഗ്രഹങ്ങള്‍ തണുക്കുന്നതിനും അവയില്‍ ജീവനുദ്ഭവിക്കുന്നതിനും ഉള്ള സാധ്യത കുറവാണ്. വലിപ്പക്കുറവുള്ള നക്ഷത്രങ്ങളും ജീവന്‍ നിലനിൽക്കുന്നതിന് അനുയോജ്യമല്ലെന്നാണ് കരുതപ്പെടുന്നത്. സൗരപിണ്ഡത്തിന്റെ 60 ശതമാനത്തിലും കുറവുള്ള നക്ഷത്രങ്ങൾക്ക് ആയുസ്സ് വളരെ കൂടുതലാണെങ്കിലും അവയുടെ കേന്ദ്രത്തില്‍ നടക്കുന്ന ന്യൂക്ലിയര്‍ പ്രവർത്തനങ്ങള്‍ വളരെ സാവധാനത്തിലായിരിക്കും. കുറഞ്ഞ വെളിച്ചവും ചൂടും പുറത്തുവിടുന്ന ഇത്തരം നക്ഷത്രങ്ങൾക്ക് ചുറ്റും ഗ്രഹ കുടുംബമുണ്ടെങ്കില്‍ തന്നെ അവിടെ ജീവന്‍ വളർന്ന് വികസിക്കാനുള്ള സാധ്യത കുറവാണ്.

8. നക്ഷത്രത്തിന് ഗാലക്‌സിയിലുള്ള സ്ഥാനം
ഗാലക്‌സീകേന്ദ്രത്തിനടുത്ത് സ്ഥിതിചെയ്യുന്ന നക്ഷത്രങ്ങള്‍ വളരെയടുത്തും അതിശക്തമായ വികിരണങ്ങള്‍ ഉത്സർജിക്കുന്നവയുമായിരിക്കും. ഇത്തരം മേഖലകളില്‍ രൂപമെടുത്തിട്ടുള്ള ഗ്രഹങ്ങളിലും ജീവന് സാധ്യത കുറവാണ്. ഒറ്റ നക്ഷത്രങ്ങളുടെ ഗ്രഹകുടുംബങ്ങളാണ് ജീവന് കൂടുതല്‍ യോഗ്യമായത്. സൂര്യന്റെ കാര്യം പരിഗണിച്ചാല്‍ അത് ഗാലക്‌സീ കേന്ദ്രത്തില്നി്ന്നും 26,000 പ്രകാശ വർഷം അകലെയാണുള്ളത്. ഒറിയണ്‍ സ്പര്‍ എന്നറിയപ്പെടുന്ന സർപ്പിള കരത്തിലുള്ള ഒറ്റ നക്ഷത്രമാണ് സൂര്യന്‍. തൊട്ടടുത്ത നക്ഷത്രത്തിലേക്ക് നാലു പ്രകാശ വർഷത്തിലധികം ദൂരമുണ്ട്.
ഗ്രഹരൂപീകരണത്തെപ്പറ്റിയുള്ള പല സിദ്ധാന്തങ്ങളും ഇപ്പോള്‍ സംശയത്തിന്റെ നിഴലിലാണ്. ഇരട്ട നക്ഷത്രങ്ങള്‍ സൃഷ്ടിക്കുന്ന ശക്തമായ കാന്തിക ക്ഷേത്രം ഗ്രഹരൂപീകരണത്തിന് തടസ്സം നില്ക്കുകമെന്നായിരുന്നു അടുത്തകാലം വരെയുള്ള വിശ്വാസം. എന്നാല്‍ കെപ്ളർ സ്‌പേസ്‌ക്രാഫ്റ്റ് ഇരട്ട നക്ഷത്രങ്ങളായ അൽഫ സെന്റോറി സിസ്റ്റത്തിന് ചുറ്റും ഗ്രഹകുടുംബം കണ്ടെത്തിയതോടെ ആ വിശ്വാസവും തകർന്നു.

ഭൗമേതര ജീവന്‍
പുറമെ എന്നും ഭൂമിയുമായി ബന്ധമുള്ളത് എന്നും അർഥമുള്ള രണ്ടു ലാറ്റിന്‍ വാക്കുകളിൽ നിന്നാണ് ‘എക്‌സ്ട്രാ ടെറസ്ട്രിയല്‍’ അഥവാ ‘ഭൗമേതരം’ എന്ന വാക്കിന്റെ ഉദ്ഭവം. ഭൂമിക്കു വെളിയില്‍ ഉദ്ഭവിച്ച ജീവന്‍ എന്നുവേണമെങ്കില്‍ ഭൗമേതര ജീവനെ വിളിക്കാന്‍ കഴിയും. ഏലിയന്‍ എന്ന പേരും പൊതുവെ ഉപയോഗിക്കാറുണ്ട്. ലളിതമായ ഘടനയുള്ള ബാക്ടീരിയ മുതല്‍ മനുഷ്യന്റേതു പോലെയോ അതിലും സങ്കീർണമായതോ ആയ ശരീരഘടനയുള്ള ജീവികള്‍ വരെ ഭൂമിക്കു വെളിയില്‍ ഉണ്ടാകാം. സൈദ്ധാന്തികമായി നിലനിൽപുള്ളതാണെങ്കിലും ഇന്നുവരെ ഒരു ഭൗമേതര ജീവന്‍ കണ്ടെത്താന്‍ കഴിഞ്ഞിട്ടില്ല. ഭൗമേതര ജീവന്‍ തിരയുന്ന ശാസ്ത്രശാഖയാണ് എക്‌സോബയോളജി അല്ലെങ്കില്‍ ആസ്‌ട്രോബയോളജി എന്നെല്ലാമറിയപ്പെടുന്നത്. ആസ്‌ട്രോബയോളജി എന്ന പേരിനാണ് കുറേക്കൂടി സാർവത്രിക സ്വഭാവമുള്ളത്. പ്രപഞ്ചത്തിലെ ജീവൻ, അതു ഭൂമിയിലാണെങ്കിലും മറ്റേതൊരു ഗ്രഹത്തിലാണെങ്കിലും തുല്യ പ്രാധാന്യം നൽകുന്നതുകൊണ്ടാണിത്. അമേരിക്കയിലെ നാഷനല്‍ ഇന്സ്റ്റിറ്റ്യൂട്ട് ഓഫ് ഹെൽത്തിലെ ശാസ്ത്രജ്ഞര്‍ 2013ല്‍ പുറത്തിറക്കിയ ഗവേഷണ റിപ്പോർട്ടിൽ പ്രപഞ്ചത്തില്‍ ജീവന്‍ ഉദ്ഭവിച്ചത് 970 കോടി വർഷങ്ങൾക്ക് മുമ്പാണെന്ന് പറയുന്നുണ്ട്. അതിനർഥം ഭൂമിയും സൂര്യനുമെല്ലാം രൂപംകൊള്ളുന്നതിനും 500 കോടി വര്ഷം മുമ്പ് പ്രപഞ്ചത്തില്‍ ജീവന്റെ തുടിപ്പുകള്‍ നാമ്പെടുത്തിരുന്നുവെന്നാണ്. ഭൗമേതര ജീവന്‍ യാഥാര്ഥ്യമെന്ന് കരുതുന്നവര്‍ തന്നെയാണ് ശാസ്ത്രജ്ഞരില്‍ ഭൂരിഭാഗവും. എന്നാല്‍, നേരിട്ടുള്ള ഒരു തെളിവിന്റെ അഭാവമാണ് അതേക്കുറിച്ചൊരു ശാസ്ത്രീയ നിഗമനം രൂപീകരിക്കുന്നതില്‍ തടസ്സമായി നിൽക്കുന്നത്..

ഭൂമിയിലെ എല്ലാ ജീവരൂപങ്ങളുടെയും ആധാരം 26 രാസമൂലകങ്ങളാണ്. എന്നിരുന്നാലും ഭൗമജീവന്റെ 95 ശതമാനവും കാര്ബണ്‍, ഹൈഡ്രജന്‍, നൈട്രജന്‍, ഓക്‌സിജന്‍, ഫോസ്ഫറസ്, സൾഫര്‍ എന്നിവയാണ് ആ മൂലകങ്ങള്‍. CHNOPS എന്ന് ഈ മൂലകങ്ങളെ ചുരുക്കി വിളിക്കാറുണ്ട്. ഭൗമജീവന്റെ അടിസ്ഥാനം ഈ ആറു മൂലകങ്ങളാണ്. ബാക്കിയുള്ള മൂലകങ്ങളെല്ലാം വളരെ നിസ്സാരമായ തോതില്‍ മാത്രമേ ജീവന് ആവശ്യമുള്ളൂ. ജൈവ-രാസ പ്രതിപ്രവർത്തനങ്ങള്‍ നടക്കുന്നതിന് ഭൗമജീവന് ജലം എന്ന മാധ്യമം ആവശ്യമാണ്. ജലത്തിന്റെ സാന്നിധ്യവും ഭൂമിയിലേതുപോലെയുള്ള താപനിലയുമുള്ള ഒരു ഗ്രഹത്തില്‍ കാർബണും മറ്റു മൂലകങ്ങളുമുണ്ടെങ്കില്‍ അവയുടെ പ്രതിപ്രവർത്തന ഫലമായി ജൈവതന്മാത്രകള്‍ ഉദ്ഭവിക്കുന്നതില്‍ തടസ്സമൊന്നുമില്ല. കാർബണ്‍, ഹൈഡ്രജന്‍, ഓക്‌സിജന്‍ എന്നീ മൂലകങ്ങള്‍ കൂടിച്ചേർന്നുണ്ടാകുന്ന കാർബോഹൈഡ്രേറ്റുകള്‍ ജീവന് അടിസ്ഥാനമായി വേണ്ട രാസോർജം പ്രദാനംചെയ്യും. ജീവന്റെ അടിസ്ഥാനശിലകളായ റൈബോസും സെല്ലുലോസും ഡി.എന്‍.എയും ആര്‍.എന്‍.എയും രൂപീകരിക്കപ്പെടുന്നതും കാർബോഹൈഡ്രേറ്റുകളില്‍ നിന്നാണ്. സസ്യങ്ങള്‍ അവയ്ക്കാവശ്യമായ ഊര്ജം സമ്പാദിക്കുന്നത് സൂര്യപ്രകാശത്തില്‍ നിന്നാണ്. പ്രകാശസംശ്ലേഷണം എന്ന പ്രക്രിയയിലൂടെ സസ്യങ്ങള്‍ ആഹാരം പാകം ചെയ്യുമ്പോള്‍ സൂര്യപ്രകാശം രാസ ഊർജമായി പരിവർത്തനം ചെയ്ത് ഫലങ്ങളിലും കാണ്ഡത്തിലും ഇലകളിലും വേരുകളിലുമെല്ലാം സംഭരിച്ചു വയ്ക്കുകയാണ് ചെയ്യുന്നത്. ഭൗമജീവന്‍, അത് ജന്തുജീവനാണെങ്കിലും സസ്യജീവനാണെങ്കിലും അടിസ്ഥാനം കാർബണ്‍ ആണ്. പിന്നീട് ജലവും.

ജലത്തിന്റെ പി.എച്ച് മൂല്യം ന്യൂട്രല്‍ (പി.എച്ച്:7) ആയതുകൊണ്ട് ലോഹ, അലോഹ അയോണുകള്‍ ഒരുപോലെ ജലത്തില്‍ ലയിച്ചു ചേരുകയും ജൈവതന്മാത്രകളുടെ ഉദ്ഭവത്തിന് ഉത്‌പ്രേരകമാവുകയും ചെയ്യും. കാർബണ്‍ ഭൗമജീവന്റെ ആധാര ശിലയായതിനും ഒരു കാരണമുണ്ട്. ഈ മൂലകത്തിന് അലോഹങ്ങളുമായി സഹസംയോജക രാസപ്രവർത്തനത്തിൽ ഏർപ്പെടുന്നതിനുള്ള സാമർഥ്യം കാരണം നൈട്രജന്‍, ഓക്‌സിജന്‍, ഹൈഡ്രജന്‍ തുടങ്ങിയ മൂലകങ്ങളുമായി എളുപ്പത്തില്‍ രാസപ്രവർത്തനത്തിൽ ഏർപ്പെടുന്നതിന് കഴിയും. കാർബൺ ഡയോക്‌സൈഡും ജലവും സൗരോർജത്തെ സംഭരിച്ചുവയ്ക്കുന്ന അറകളാണ്. അന്നജമായും പഞ്ചസാരകളായും സൗരോർജം സംഭരിച്ചു വയ്ക്കുകയും പിന്നീട് ഓക്‌സീകരണം വഴി ഇങ്ങനെ സംഭരിച്ചു വച്ചിരിക്കുന്ന ബയോ കെമിക്കല്‍ എനർജി മറ്റ് ജൈവ-രാസപ്രവർത്ത നങ്ങൾക്ക് ആവശ്യമുള്ള ഇന്ധനമായി ഉപയോഗിക്കുകയുമാണ് ചെയ്യുന്നത്. കാർബണും ഹൈഡ്രജനും ഓക്‌സിജനും ചേർന്നുണ്ടാകുന്ന ഓർഗാനിക് ആസിഡുകളും നൈട്രജനും ഹൈഡ്രജനും ചേർന്ന് രൂപംകൊള്ളുന്ന അമിന്‍ ബേസുകളും തമ്മില്‍ പ്രതിപ്രവർത്തിക്കുന്നതിലൂടെ രൂപംകൊള്ളുന്ന പോളിമറുകളും പ്രോട്ടീനുകളും അമിനോ ആസിഡുകള്‍ സൃഷ്ടിക്കുന്നതിന് ഇടയാക്കും. ഈ അമിനോ അമ്ലങ്ങള്‍ ഫോസ്‌ഫേറ്റുകളുമായി കൂടിച്ചേരുന്നതു വഴി ജനിതക സന്ദേശങ്ങള്‍ സംഭരിച്ചുവയ്ക്കുന്ന ഡി-ഓക്‌സീ റൈബോ ന്യൂക്ലിക് ആസിഡുകളുടെ (ഡി.എന്‍.എ.)യും ജീവകോശങ്ങളുടെ ഊര്ജസ്രോതസ്സായ അഡിനോസിന്‍ ട്രൈ ഫോസ്‌ഫേറ്റ് (എ.ടി.പി) തന്മാത്രകളുടെയും സൃഷ്ടിക്കു കാരണമാകുന്നു.

ജലം ആധാരമായുള്ള ജീവനെക്കുറിച്ച് മാത്രമാണ് മുകളില്‍ വിവരിച്ചത്. എന്നാല്‍, ജീവന്റെ ആധാരം ജലവും കാർബണും ഫോസ്ഫറസുമൊന്നും ആകണമെന്നില്ല. ജലത്തിന് പകരം അമോണിയയുടെ സാധ്യതകള്‍ ശാസ്ത്രലോകം ചർച്ച ചെയ്യുന്നുണ്ട്. അദ്ഭുതപ്പെടാന്‍ തുടങ്ങിക്കോളൂ. നക്ഷത്രങ്ങളില്‍ ജീവനുണ്ടാകുമോ? തിളച്ചുമറിയുന്ന നക്ഷത്ര ദ്രവ്യത്തില്‍ (പ്ലാസ്മ) ജീവനുണ്ടാകാനുള്ള സാധ്യത ശാസ്ത്രജ്ഞര്‍ സംശയിക്കുന്നുണ്ട്. ന്യൂട്രോണ്‍ താരങ്ങളെന്ന അതിസാന്ദ്രമായ മൃതനക്ഷത്രത്തിന്റെ ഉപരിതലത്തിലും ജീവൻ കണ്ടെത്താന്‍ കഴിയുമെന്നാണ് പ്രതീക്ഷിക്കുന്നത്. എന്നാല്‍ അത്തരം നക്ഷത്ര ജീവനുമായി ബന്ധപ്പെടാന്‍ കഴിയുന്ന സാങ്കേതികവിദ്യ നിലവിലില്ലാത്തത് വലിയൊരു പരിമിതിയായി അവശേഷിക്കുകയാണ്.